Source code for lightning.fabric.plugins.precision.precision

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from contextlib import AbstractContextManager, nullcontext
from typing import Any, Literal

from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer

from lightning.fabric.utilities.types import _PARAMETERS, Optimizable

_PRECISION_INPUT_INT = Literal[64, 32, 16]
_PRECISION_INPUT_STR_ALIAS_CONVERSION = {"64": "64-true", "32": "32-true", "16": "16-mixed", "bf16": "bf16-mixed"}
_PRECISION_INPUT_STR_ALIAS = Literal["64", "32", "16", "bf16"]
_PRECISION_INPUT_STR = Literal[
    "transformer-engine",
    "transformer-engine-float16",
    "16-true",
    "16-mixed",
    "bf16-true",
    "bf16-mixed",
    "32-true",
    "64-true",
]
_PRECISION_INPUT = _PRECISION_INPUT_INT | _PRECISION_INPUT_STR | _PRECISION_INPUT_STR_ALIAS


[docs]class Precision: """Base class for all plugins handling the precision-specific parts of the training. The class attribute precision must be overwritten in child classes. The default value reflects fp32 training. """ precision: _PRECISION_INPUT_STR = "32-true"
[docs] def convert_module(self, module: Module) -> Module: """Convert the module parameters to the precision type this plugin handles. This is optional and depends on the precision limitations during optimization. """ return module
[docs] def tensor_init_context(self) -> AbstractContextManager: """Controls how tensors get created (device, dtype).""" return nullcontext()
[docs] def module_init_context(self) -> AbstractContextManager: """Instantiate module parameters or tensors in the precision type this plugin handles. This is optional and depends on the precision limitations during optimization. """ return nullcontext()
[docs] def forward_context(self) -> AbstractContextManager: """A contextmanager for managing model forward/training_step/evaluation_step/predict_step.""" return nullcontext()
[docs] def convert_input(self, data: Any) -> Any: """Convert model inputs (forward) to the floating point precision type of this plugin. This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is torch.float32). """ return data
[docs] def convert_output(self, data: Any) -> Any: """Convert outputs to the floating point precision type expected after model's forward. This is a no-op in the base precision plugin, since we assume the data already has the desired type (default is torch.float32). """ return data
[docs] def pre_backward(self, tensor: Tensor, module: Module | None) -> Any: """Runs before precision plugin executes backward. Args: tensor: The tensor that will be used for backpropagation module: The module that was involved in producing the tensor and whose parameters need the gradients """
[docs] def backward(self, tensor: Tensor, model: Module | None, *args: Any, **kwargs: Any) -> None: """Performs the actual backpropagation. Args: tensor: The tensor that will be used for backpropagation model: The module that was involved in producing the tensor and whose parameters need the gradients """ tensor.backward(*args, **kwargs)
[docs] def post_backward(self, tensor: Tensor, module: Module | None) -> Any: """Runs after precision plugin executes backward. Args: tensor: The tensor that will be used for backpropagation module: The module that was involved in producing the tensor and whose parameters need the gradients """
[docs] def optimizer_step( self, optimizer: Optimizable, **kwargs: Any, ) -> Any: """Hook to run the optimizer step.""" return optimizer.step(**kwargs)
[docs] def main_params(self, optimizer: Optimizer) -> _PARAMETERS: """The main params of the model. Returns the plain model params here. Maybe different in other precision plugins. """ for group in optimizer.param_groups: yield from group["params"]
def unscale_gradients(self, optimizer: Optimizer) -> None: return
[docs] def state_dict(self) -> dict[str, Any]: """Called when saving a checkpoint, implement to generate precision plugin state_dict. Returns: A dictionary containing precision plugin state. """ return {}
[docs] def load_state_dict(self, state_dict: dict[str, Any]) -> None: """Called when loading a checkpoint, implement to reload precision plugin state given precision plugin state_dict. Args: state_dict: the precision plugin state returned by ``state_dict``. """ pass
[docs] def teardown(self) -> None: """This method is called to teardown the training process. It is the right place to release memory and free other resources. """